
Deck constructor is shown, as there is a 
special case when creating decks in which 
we can provide a named Deck. Providing 
a string to the Deck class allows us to
provide this deck name.

Now that the player knows about the deck, the
player can draw a card from the deck (using the 
Deck's drawCard() method), then add the drawn
card to its cards. This way the Deck manages its
data (the remainingCards), and the Player 
manages its data (their hand, or cards). 

The deal method in CrazyEights will loop
over the number of cards needed, and then 
the players and distribute cards using the 
Player's drawCard(deck) method.

A deal method is included here
to keep handleStartGame a little cleaner.

This type of line indicates a dependency.
This means that a class knows about another
class (in this case Player knows about Deck) 
but does not keep a reference to an instance 
of the Deck class in its fields.

Why No Card Class?
You're welcome to include your 
own card class if you feel there
are methods that will add benefit to 
it so it's not a data class.

For the dealing use case, there was
no need to have a separate Card class.

Player

cards: ArrayList<String>

shuffle()
drawCard(deck: Deck): String

Deck

remainingCards:ArrayList<String>

Deck(deckName: String)
shuffle()
drawCard(): String

CrazyEights

deck: Deck
players: ArrayList<Player>

main(args: String[])
handleStartGame(numPlayers: int, deckName: String, shuffle: boolean)
deal()

2..4


